Universidade de Aveiro

DETI

Projeto em Engenharia Informática

Mobility platform in Aveiro Tech City Living

Lab Infrastructure

Milestone 2

Grupo 3

Diogo Mendes, 88801

Hugo Leal, 93059

Luísa Amaral, 93001

Maria Strecht, 93089

Pedro Loureiro, 92953

13 de abril de 2021

1 Summary

This report is a compilation of the outputs of the project's Elaboration phase. In this document the elements that were already shown in class are presented as well as the deployment diagram and domain model of the system.

Contents

1	Summary									
2	State of the art									
3	Requirements Gathering									
4	Actors and Use Cases									
5	Functional Requirements									
	5.1 Sensor modules									
	5.2 API									
	5.3 Front-End									
6	Non Functional Requirements									

6	Non Functional Requirements	7
	6.1 Performance	7
	6.2 Usability	7
	6.3 Security	8
7	Domain Model	9
8	Architecture Diagram	9
9	Deployment Diagram	11
10	User Interaction Mock-Ups	12

1

 $\mathbf{2}$

3

 $\mathbf{5}$

5

5

6

.

.

.

List of Figures

1	API - Use Case Diagram	4
2	Web App - Use Case Diagram	4
3	Domain diagram	9
4	Architecture diagram	10
5	Deployment diagram	11
6	Image of the web application in full view	12
7	The web application on a mobile screen	13
8	Real-time the detection information	13
9	Notification feature	14
10	Detection data for a full day	14
11	Possible ways to show past data on the application	15
12	Image of the web application in full	15

List of Tables

1	Actors and its roles	3
2	Functional Requirements - Sensor modules	5
3	Functional Requirements - API	5
4	Functional Requirements - Front-End	6
5	Non Functional Requirements - Performance	7
6	Non Functional Requirements - Usability	7
7	Non Functional Requirements - Security	8

2 State of the art

- Survey of public transport routes using Wi-Fi
 - Goal: gather data regarding the use of transportation to provide accurate OD matrices and to improve public transport efficiency
- A Case Study of Wi-Fi Sniffing Performance Evaluation
 - Goal: identify the possible factors including channel settings and access point configurations that affect sniffing behaviours and performances
- Crowd Mobility Analysis using Wifi Sniffers
 - Presented a system for crowd behaviour analysis using non-invasive Wi-Fi probes
- ViFi-MobiScanner: Observe Human Mobility via Vehicular Internet Service
 - Goal: Understand human mobility using the passengers Wi-Fi mobile stations (e.g. Smartphones) connected to the VIS and GPS data
- *Heptasense*
 - Platform that provides intelligence about the behaviour of people and vehicles to improve operations
 - Helps prevent incidents and assures safety as well as gives you a chance to see and analyze the patterns of pedestrian habits
- Parquery
 - Parquery's AI technology detects vehicles and any kind of object in images from any camera
 - Smart parking solution: efficiently and effectively manages parking spaces

3 Requirements Gathering

- Important data to capture in Cais da Fonte Nova:
 - Number of people on the sidewalk
 - Number of moliceiros passing by
 - Number of people inside the moliceiros
- How to obtain the data: to increase the accuracy of the data we will use both wifi sniffing and object detection from the feedback of the camera
- Processing the data: Comparing the data acquired from both methods, the variations of the flow of people and moliceiros will be calculated
- Showing the data on the dashboard:
 - Use of graphics to show the data in a more visually appealing way
 - The shown data can be filtered to allow the visualization of the variation of traffic in certain days and/or hours and other relevant information
 - Live data will be available
- Who are the target users:
 - All the economic businesses in the area may use the data to improve their advertisement efficacy
 - The tourism branch (shops related to tourism, restaurants, bars, specialities products shops, etc)
 - Aveiro's Town Hall (specially requested this information to use, for example, on the planning of certain activities)

4 Actors and Use Cases

After analysing what are the requirements of our project, we stipulated that our system has the following actors:

Actor	Role							
Users	Can access the web application to obtain data. For example, event							
	organizers, Aveiro's city hall, emergency services, nearby stores,							
	tourism companies, etc.							
Administrator	Has access to all data, modifies the web application and fixes bugs							
Sensors	Capture and send all the data to the broker in real-time. This							
	englobes the monitoring Wi-Fi interface, cameras and APU/Jetson							
	Nano							
Broker	Stores all the data collected by the sensors and provides it to the							
	subscribed clients in real time							

Table 1: Actors and its roles

The following subsection presents our project's Use Cases, which are divided into two different diagrams: one relative to the API and one relative to the Web App.

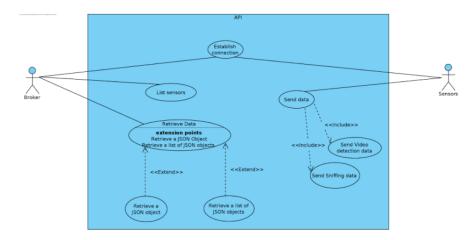


Figure 1: API - Use Case Diagram

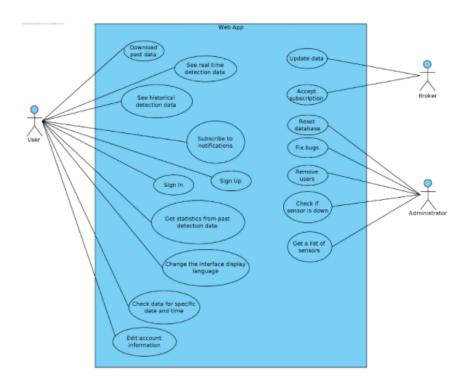


Figure 2: Web App - Use Case Diagram

5 Functional Requirements

In this section there are presented some functional requirements that our system must perform.

5.1 Sensor modules

Reference	Functional Requirements			
RFS-1	t should be possible to count the number of devices emitting Wi-Fi requests			
	in the surroundings			
RFS-2	It should be possible to estimate how many people are in the surroundings			
RFS-3	It should be possible to send the sensorial data to the broker			
RFS-4	It must be possible to estimate how many moliceiros pass in that area			

 Table 2: Functional Requirements - Sensor modules

5.2 API

Reference	Functional Requirements					
RFA-1	It should be possible to obtain information when there are changes in the data					
	(atual value, average of values, list of values)					
RFA-2	The sensors of Wi-fi sniffing should provide the data in real-time					
RFA-3	The cameras should provide new data in real-time					
RFA-4	It should be possible to list and visualize the types of sensors used and their					
	location					

Table 3: Functional Requirements - API

5.3 Front-End

Reference	Functional Requirements						
RFF-1	It must be possible to visualize the geographical places where the data is being						
	collected						
RFF-2	It must be possible to check the occupation in terms of people and and the						
	traffic of moliceiros in the area						
RFF-3	Statistical analysis of the data from the sensors must be presented						
RFF-4	Historical data must be presented						
RFF-5	t must be possible to manage and to see details of the data collected by the						
	sensors						
RFF-6	It must be possible to perform the user authentication in the platform						
RFF-7	It must be offered the possibility of sending notifications to the users when						
	there are changes in the data						

 Table 4: Functional Requirements - Front-End

6 Non Functional Requirements

In this section there are introduced the non functional requirements that must be fulfilled by the system.

6.1 Performance

Reference	Non Functional Requirements				
RD-1	The application must present the data in real-time with the least amount of				
	delay possible				
RD-2	The web application must be responsive and able to adapt to any device where				
	it is being accessed				
RD-3	The web application load time should not be more than one second for users				

Table 5: Non Functional Requirements - Performance

6.2 Usability

Reference	Non Functional Requirements				
RU-1	The website's interface has to be user optimized and easy to interact with				
RU-2	The solution must be versatile so that future sensors can be added or future				
	functionalities to the API				
RU-3	The Web Application must allow to view information in Portuguese as well as				
	in English				

Table 6: Non Functional Requirements - Usability

6.3 Security

Reference	Non Functional Requirements					
RS-1	The data received must not have private information of the devices and respec-					
	tive users before being sent to the broker					
RS-2	Only administrators can manage the sensors					
RS-3	The access to the sensor data must be managed by the system					
RS-4	Only the admin can access and change the sensors information					

 Table 7: Non Functional Requirements - Security

7 Domain Model

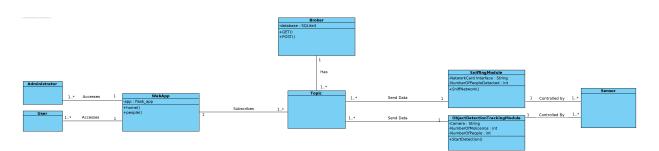


Figure 3: Domain diagram

The domain model of the project (Figure 3) represents the real-world conceptual classes of the system, their attributes and how they are associated.

8 Architecture Diagram

In this section the architecture of the project is presented (Figure 4). The data relative to the number of people detected by Wi-Fi sniffing and object detection and the number of moliceiros detected by object detection is captured by the respective modules in the sensors and this data is sent to the broker through a MQTT connection. The broker saves the data in a database and also sends it to the Web service (Flask). The web server (Gunicorn) interacts with the Web service and communicates with the Reverse Proxy Server (Nginx) through a Unix socket. The Reverse Proxy Server manages the load balance of requests. The user visualizes the web application in his device, sending and receiving HTTPS requests and responses.

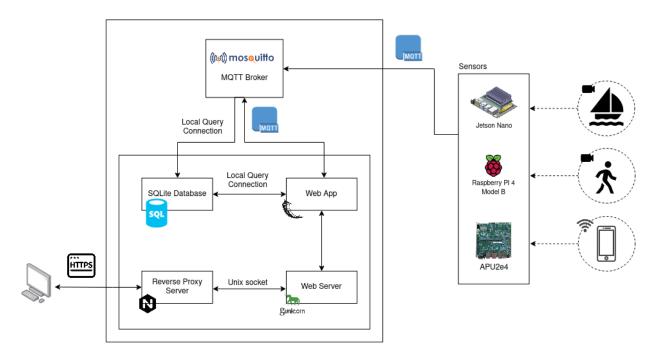


Figure 4: Architecture diagram

9 Deployment Diagram

This section shows the deployment diagram of the project (Figure 5). In the diagram it is possible to view the several components of the system and how they interact between them.

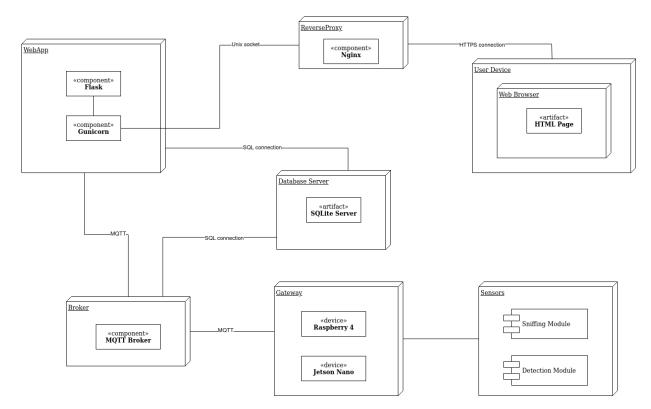


Figure 5: Deployment diagram

10 User Interaction Mock-Ups

This section presents several design mock-ups of how the front-end of our system will look like. Throughout the development of the project these may be altered depending on how to present the data in a clear and understanding way. However, these mock-ups will serve as a base to build a functional prototype.

In figure 6 we can see the web application in full perspective and how the objects are placed on the interface.

Figure 6: Image of the web application in full view

The web application will have full compatibility between devices and browsers. In figure 7 we can see the web application running on mobile and it's responsiveness. For instance, the menu bar also works on mobile.

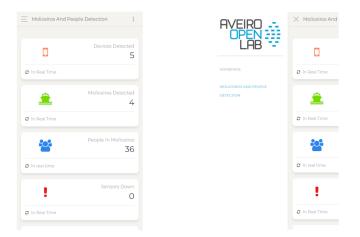


Figure 7: The web application on a mobile screen

On the top of the application page (figure 8) it is possible to see in real-time the detection of *moliceiros*, people and devices. It is also possible to see which sensors might be down.

Moliceiros And	People Detection					<u> (</u>	рт 🛔 🗘 * 🐵
O	Devices Detected	.	Moliceiros Detected	***	People In Moliceiros 36	1	Sensors Down O
C In Real Time		2 In Real Time		2 In real time		2 In Real Time	

Figure 8: Real-time the detection information

Some of the features to be implemented (figure 9) are the interface language translation, user login, notifications.

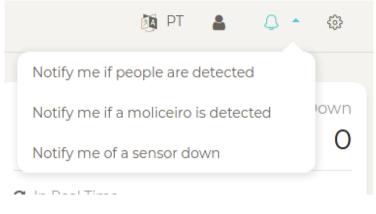
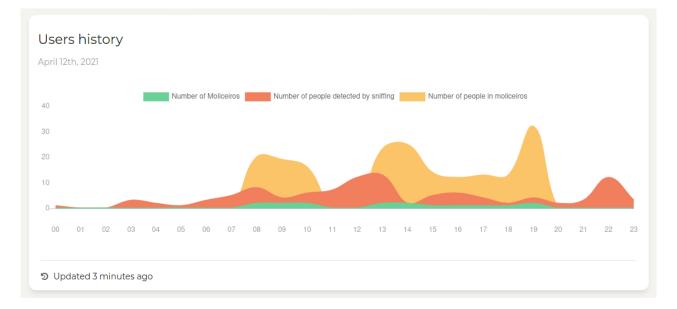



Figure 9: Notification feature

It is possible for the user to see the detection data of a full day (figure 10)

Figure 10: Detection data for a full day

In figure 11, we can see possible ways to show data. For example in the mock-up diagrams we can see the detection information of the last 7 days and the last year

Figure 11: Possible ways to show past data on the application

The user will also be able to get data from a specific date and time. In figure 12 we can see a possible way of prompting the user for the date and time of the information

Users history Into Detail		
Date:	Start Time:	End Time:
mm/dd/yyyy	:	:

Figure 12: Image of the web application in full